Deformation quantization of moduli spaces of Higgs bundles on a Riemann surface with translation structure

نویسندگان

چکیده

Let X be a compact connected Riemann surface of genus g ≥ 1 equipped with nonzero holomorphic 1-form. MX(r) denote the moduli space semistable Higgs bundles on rank r and degree r(g − 1) + 1; it is complex symplectic manifold. Using translation structure open subset where 1-form does not vanish, we construct natural deformation quantization certain nonempty Zariski MX(r).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of Moduli Spaces of Higgs Bundles

We construct a Petersson-Weil type Kähler form on the moduli spaces of Higgs bundles over a compact Kähler manifold. A fiber integral formula for this form is proved, from which it follows that the Petersson-Weil form is the curvature of a certain determinant line bundle, equipped with a Quillen metric, on the moduli space of Higgs bundles over a projective manifold. The curvature of the Peters...

متن کامل

Quantization of a Moduli Space of Parabolic Higgs Bundles

Let MH be a moduli space of stable parabolic Higgs bundles of rank two over a Riemann surface X . It is a smooth variety over C equipped with a holomorphic symplectic form. Fix a projective structure P on X . Using P , we construct a quantization of a certain Zariski open dense subset of the symplectic variety MH .

متن کامل

Moduli of Higgs Bundles

2 Local symplectic, complex and Kähler geometry: a quick review 10 2.1 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Symplectic quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Complex manifolds . . . . . . . . . . . . . . ....

متن کامل

The Hodge Numbers of the Moduli Spaces of Vector Bundles over a Riemann Surface

Let M(n, d) denote the moduli space of stable holomorphic vector bundles of coprime rank n and degree d over a fixed Riemann surface Σ of genus g ≥ 2. Let Λ be a fixed line bundle over Σ of degree d and let MΛ(n, d) ⊂ M(n, d) denote the space consisting of those bundles with determinant Λ. The spaces M(n, d) and MΛ(n, d) are nonsingular complex projective varieties whose geometry has been much ...

متن کامل

The Pontryagin rings of moduli spaces of arbitrary rank holomorphic bundles over a Riemann surface

The cohomology of M(n, d), the moduli space of stable holomorphic bundles of coprime rank n and degree d and fixed determinant, over a Riemann surface Σ of genus g ≥ 2, has been widely studied and from a wide range of approaches. Narasimhan and Seshadri [17] originally showed that the topology of M(n, d) depends only on the genus g rather than the complex structure of Σ. An inductive method to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2021

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0067178